

FRAUNHOFER RESEARCH INSTITUTION FOR ADDITIVE MANUFACTURING TECHNOLOGIES IAPT

ADDITIVE FATIGUE STUDY

INFLUENCE OF DIFFERENT SURFACE FINISHING METHODS ON MECHANICAL PROPERTIES FOR METAL AM COMPONENTS

ADDITIVE FATIGUE STUDY

PROBLEM STATEMENT

Current Situation

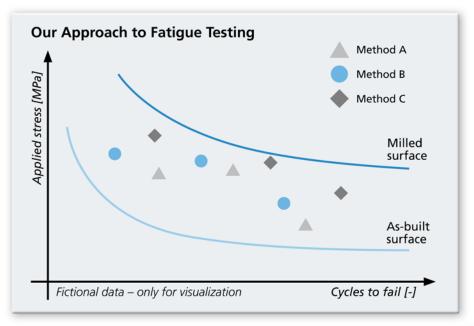
- How does each surface finishing method influence the mechanical properties of my AM components?
- Which mechanical properties can be expected after post-processing of AM components?

Solution

A study about the influence of post-processing methods on mechanical properties

- Objective comparison of different finishing methods
- No expertise needed
- Quick decision help in assessing the suitability and impact of various finishing methods on mechanical properties

CONTENT AND STRUCTURE OF THE STUDY


Materials Investigated
Ti-6Al-4V
Inconel 718

Benchmark Criteria	
Fatigue strength	
Tensile strength	
Elongation at break	
Dimensional accuracy	
Surface roughness	

Machining with undefined cutting edge

Abrasive Blasting
Vibratory Finishing

Chemical ablation
Chemical Polishing
Isotropic Superfinishing
Electronic and ablation
Electrochemical ablation
Electrochemical Polishing
Metal DryLyte
Finishing mathed combination
Finishing method combination
Vibratory Finishing + Metal DryLyte
Additional surface conditions for reference
As-built surface

Milled surface

